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1 The de-Giorgi-Nash-Moser Theorem

1.1 How the theorem answers Hilbert’s 19th problem

Today, we will be concluding our discussion of the solution to Hilbert’s 19th problem, which
was posed in 1900. Here is the problem:

Problem 1.1. Assume L = L(p) is convex and analytic. Prove that minimizers of F [u] =∫
U L(Du) dx are analytic.

The original problem was stated for d = 2 and was solved by Morrey (at Berkeley).
Later, Nash solved the problem for d ≥ 3, but it turns out that de Giorgi solved the problem
(with a slightly different theorem) a few years earlier; so both get the credit. Later, Moser
simplified the theory and proved a number of other theorems along the way. So this is
generally referred to as de Giorgi-Nash-Moser theory.

Today, we will be proving the following theorem

Theorem 1.1 (de Giorgi-Nash-Moser). Assume L ∈ C∞(Rd) and L is uniformly convex,
i.e.

λ|ξ|2 ≤ ∂pj∂pkLξjξk ≤ Λ|ξ|2.

Then for all V ⊆⊆ U , the minimizer u ∈ C∞(V ).

Remark 1.1. With uniform convexity, the uniqueness of the minimizer follows.
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Convexity of a function always tells you that

f

(
u1 + u2

2

)
≤ f(u1) + f(u2)

2
,

and strict convexity means that equality holds iff u1 = u2. So let u1, u2 be minimizers for
L. Then ∫

U
L

(
D

(
u1 + u2

2

))
≤
∫
U

1

2
L(Du1) +

1

2
L(Du2).

This means that u1+u2
2 is also a minimizer, so strict convexity gives Du1 = Du1+Du2

u2
. So

Du1 = Du2 in ∂U , and since u1, u2 agree on the boudnary, we get u1 = u2 in U .

Remark 1.2. Strict convexity is necessary for the theorem. Consider the following example
in d = 1:

Then |x| would be a minimizer, so

L(D|x|) =

∫
Lmin dx = `,

but |x| is only Lipschitz.

1.2 Reduction to u ∈ C1,α(V )

Now we will prove a key reduction to u ∈ C1,α(V ). The keyword here is “standard elliptic
theory,” and in particular L2 and Schauder theory. The minimizer will satisfy the Euler-
Lagrange equation

∂xj (∂pjL(Du)) = 0.

The minimizer u ∈ H1(U) solves this equation in the weak sense. Let us differentiate this
once more. Letting wi = ∂iu, we will have that each wi solves the linearized Euler-Lagrange
equation

∂j

(
∂2

∂pj∂pk
L

∣∣∣∣
p=Du

∂kwi

)
= 0.
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The term ∂2

∂pj∂pk
L|p=Du is uniformly elliptic (i.e. λ|ξ|2 ≤ aj,kξjξk with |a| ≤ Λ) and in L∞.

This tells us that wi ∈ H1(U), which follows from standard L2-elliptic regularity theory
(see Evans section 8.3 for details).

But still, all we know is that aj,k ∈ L∞. What do we need? All we need is to show that
aj,k ∈ C0,α for some α > 0. Remember our equation is

∂j(a
j,k∂kw) = 0.

If aj,k ∈ C0,α, then by Schauder theory, w ∈ C1.α. Then we have that u ∈ C2,α, so
aj,k ∈ C1,α. Then we get w ∈ C2,α, and we repeat. This is called an (elliptic) bootstrap
argument.

The heart of the de Giorgi-Nash-Moser theory is to show that aj,k ∈ C0,α for some
α > 0. Now it suffices to show the following theorem.

Theorem 1.2. Let w ∈ H1(B1) be a solution to Pw = −∂j(aj,k∂kw) = 0. Assume that
a ∈ L∞ and λ|ξ|2 ≤ aj,k(x)ξjξk ≤ Λ|ξ|2. Then

‖w‖C0,α(B1/2) .d,λ,Λ ‖w‖L2(B1).

Here we only need to consider a ball because we can cover U will balls. The radius 1/2
is not important; we could choose any larger number which is < 1.

1.3 Proof of the de Giorgi-Nash-Moser theorem

1.3.1 L2 to L∞ bound via Moser iteration

Step 1 of the proof is an L2 to L∞ bound.

Proposition 1.1. Suppose that Pw ≤ 0 and w > 0.

‖w‖L∞ .d,λ,Λ ‖w‖L2(B1).
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These conditions tells us that we cannot have a large peak to contribute to the L∞

norm without contributing much to the L2 norm.

Proof. (Moser iteration) Here are the ingredients:

1.

Lemma 1.1 (Energy estimate for Pw ≤ 0, w > 0). For all θ ∈ (0, 1),

‖Dw‖L2(BθR) .
Λ

λ

1

θR
‖w‖L2(BR).

Proof. Multiply by a cutoff χ which is 1 in BθR and 0 outside BR and with |Dα| .
1

(θR)|α|
. Then we use the energy method:

0 ≥
∫
Pwχ2w dx

=

∫
−∂k(aj,k∂kw)χ2w dx

=

∫
aj,k∂kwχ

2∂jw dx+ 2

∫
aj,k∂jwχ∂kχw.

This means that∫
χ2Dw2 dx ≤ 1

λ

∫
aj,k∂jw∂kwχ

2 dx

≤ −2
1

λ

∫
aj,k∂jwχw∂kχ

≤ 2
Λ

λ

∫
χ|Dw||Dx||w| dx

.
1

θR

Λ

λ

(∫
x2|Dw|2 dx

)1/2(∫
BR

|w|2 dx
)1/2

.

Now cancel on both sides to get the result.

2. Sobolev embedding: For d ≥ 3, let p∗ = 2d
d−2 . If θR < 1,

‖w‖H1(BθR) .
Λ

λ

1

θR
‖w‖L2(BR).

By the Sobolev ineuqality, we get a better Lp bound:

‖w‖Lp∗ (BθR) .
Λ

λ

1

θR
‖w‖L2(BR).

4



How do we iterate Step 2? The observation of Moser was that if β > 1, Pw ≤ 0, and
w > 0, then wβ satisfies Pw ≤ 0 and w > 0; this is because the map s 7→ sβ. Composing
convex functions preserves convexity, and composing subsolutions gives a subsolution, as
well. Therefore, we can apply 2 to wβ, we get

‖w‖β
Lp∗β(BθR)

.
Λ

λ

1

θR
‖w‖β

L2β(BR)
.

We can rewrite this as

‖w‖Lp∗β(BθR) .

(
Λ

λ

1

θR

)1/β

‖w‖β
L2β(BR)

.

If we denote q = 2β and α = p∗
2 > 1, then this equation looks like

‖w‖Lαq(BθR) .

(
Λ

λ

1

θR

)2/q

‖w‖βLq(BR).

We want to iterate this equation (2q). Start with q0 = 2, then apply this to q1 = 2α
and so on, so qn = 2αn. What should our θs be so that the radius of the ball does not go to
0? The radii are R0 = 1, R1 = θ1, R2 = θ1θ2, and so on, so Rn = θ1 · · · θn. The constants
we get will be

C1 =

(
Λ

λ

1

θ1R0

)2/q0

, · · · ,

Cn =

(
Λ

λ

1

θnRn−1

)2/qn−1

Cn−1 · · ·C1 =

(
Λ

λ

1

θn · · · θ1

)1/αn−1

· · ·
(

Λ

λ

1

θn−1 · · · θ1

)1/αn−2

.

Our goal is to choose θ1, θ2, . . . so that θ1θ2 · · · = R∞ = 1/2. So we want

θ
− 1
αn−1

n θ
− 1
αn−1−

1
αn−2

n−1 · · · θ
− 1
αn−1 ···−

1
α

1 = C∞ <∞.

If we let an = log θn, then we want exp(−
∑
an) = 1/2 and

exp

(
1

α
a1 +

1

α2
(a1 + a2) + · · ·+ 1

αn−1
(a1 + · · ·+ an−1) + · · ·

)
<∞.

These ingredients are the same things that de Giorgi’s proof used, but his argument
used sub-level sets instead of this iteration, so it was much more geometric.

1.3.2 Hölder seminorm bound via the de Giorgi oscillation lemma

The remaining step of the proof of the de Giorgi-Nash-Moser theorem is the following.
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Proposition 1.2. Let w ∈ H1(B1) satisfy Pw = 0. Then there exists an α > 0 such that

[w]C0,α(B1/4) .d,λ,Λ ‖w‖L2(B1).

This uses an oscillation lemma.

Lemma 1.2 (de Giorgi oscillation lemma). There exists a γ ∈ (0, 1) such that for w ∈
H1(B1) with Pw = 0,

oscB1/2
w ≤ γ oscB1 w,

where oscU w := supU w − infU w.

Here is how the lemma implies the proposition.

Proof. The idea is to let D = |x− y| and apply the oscillation lemma iteratively to get

|w(x)− w(y)| ≤ oscBBD(w)w ≤ γn oscB
2nD(x)

w

Now let n = − log2D + c so that B2nD ⊆ B1. We get

. γn‖w‖L∞(B1)

. Dα‖w‖L2(B2)

where α = − log2 γ > 0, so γn = γ− log2D.

1.3.3 The de Giorgi-Harnack inequality

The way to prove the de Giorgi oscillation lemma lemma is to see that w should satisfy a
sort of Harnack inequality.

Lemma 1.3 (de Giorgi-Harnack inequality). Let w ∈ H1(B1) with 1 > w > 0 and Lw = 0.
Assume that ∣∣∣∣{x ∈ B1/2 : w ≥ 1

2

}∣∣∣∣ ≥ 1

2
|B1/2|.

Then there exists a γ > 0 such that w ≥ γ in B1/2.

Here is how the de Giorgi-Harnack inequality implies the oscillation lemma.

Proof. Without loss of generality, we may arrange for supB1
w = 1 − ε and infB1 w = ε.

On B1/2, one of the following must hold:

1. |{x ∈ B1/2 : w ≥ 1
2}| ≥

1
2 |B1/2|: In this case, apply the de Giorgi-Harnack inequality

for w.

2. |{x ∈ B1/2 : w ≥ 1
2}| ≤

1
2 |B1/2|: This this case, 1 − w is still a solution, so we can

apply he de Giorgi-Harnack inequality for 1− w.
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Moser’s approach actually proves the de Giorgi-Harnack inequality without the last
assumption, but this needs PMO theory. Here is a quick proof of the inequality:

Proof. The key idea is to look at v = − logw. (Exercise: For −∆u = 0 in U , show that
|∇ log u|L∞(V ) . 1 for all V ⊆⊆ U . Then get that minV u ≥ γmaxV u.) There is an a
priori bound for ∇ logw:

Lemma 1.4. Suppose w ∈ H1(B1) with Pw ≥ 0 and w > 0. Then

‖∇ logw‖L2(B1/2) .
Λ

λ
.

Proof. Multiply Pw ≥ 0 by w−1 and integrate over U .

This is deficient in two ways: it is not an L∞ bound, and it is only a bound on the
gradient, not w itself. However, notice that w is also a subsolution, so v = − logw is a
subsolution: Pv ≥ 0. When w < 1, v > 0. So we have inequality of the form

‖v‖L∞(B1/4) . ‖v‖L2(B1/2).

The last assumption in the statement of the de Giorgi-Harnack inequality tells us that

|{x ∈ B1/2 : v ≤ log 2}| ≥ 1

2
|B1/2|.

Now we use a Poincaré-type inequality:

Lemma 1.5. If the above bound (*) holds, ad v ∈ H1(B1/2), then

‖v‖L2(B1/2) . ‖Dv‖L2(B1/2) + 1.

Proof. By the standard Poincaré inequality, there exists a c such that

‖v − c‖L2(B1/2) . ‖Dv‖L2(B1/2).

Now split into cases: If c ≤ 100 log 2, we are done. If c ≥ 100 log 2, then

‖Dv‖L2(B1/2) ≥ ‖v − c‖L2(B1/2)

≥ ‖v − c‖L2(A)

≥ 99

100
c‖1‖L2(A)

& c,

where the last step uses the above bound (*).

This completes the proof of the Giorgi-Harnack inequality.
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